88116101

CHEMISTRY

HIGHER LEVEL

PAPER 1

Monday 7 November 2011 (afternoon)
1 hour

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- For each question, choose the answer you consider to be the best and indicate your choice on the answer sheet provided.
- The periodic table is provided for reference on page 2 of this examination paper.
The Periodic Table

$\begin{gathered} 1 \\ \mathbf{H} \\ 1.01 \end{gathered}$				Atomic number Element													$\begin{gathered} 2 \\ \mathrm{He} \\ 4.00 \end{gathered}$
$\begin{gathered} 3 \\ \mathrm{Li} \\ 6.94 \end{gathered}$	$\begin{gathered} 4 \\ \mathrm{Be} \\ 9.01 \end{gathered}$			Relative								$\begin{gathered} 5 \\ \mathbf{B} \\ 10.81 \end{gathered}$	$\begin{gathered} 6 \\ \mathbf{C} \\ 12.01 \end{gathered}$	$\begin{gathered} 7 \\ \mathbf{N} \\ 14.01 \end{gathered}$	$\begin{gathered} 8 \\ \mathbf{O} \\ 16.00 \end{gathered}$	$\begin{gathered} 9 \\ \mathbf{F} \\ 19.00 \end{gathered}$	$\begin{gathered} 10 \\ \mathbf{N e} \\ 20.18 \end{gathered}$
$\begin{gathered} 11 \\ \mathbf{N a} \\ 22.99 \end{gathered}$	$\begin{gathered} 12 \\ \mathbf{M g} \\ 24.31 \end{gathered}$											$\begin{gathered} 13 \\ \mathbf{A l} \\ 26.98 \end{gathered}$	$\begin{gathered} 14 \\ \mathbf{S i} \\ 28.09 \end{gathered}$	$\begin{gathered} 15 \\ \mathbf{P} \\ 30.97 \end{gathered}$	$\begin{gathered} 16 \\ \mathbf{S} \\ 32.06 \end{gathered}$	$\begin{gathered} 17 \\ \text { Cl } \\ 35.45 \end{gathered}$	$\begin{gathered} 18 \\ \mathbf{A r} \\ 39.95 \end{gathered}$
$\begin{gathered} 19 \\ \mathbf{K} \\ 39.10 \end{gathered}$	$\begin{gathered} 20 \\ \mathrm{Ca} \\ 40.08 \end{gathered}$	$\begin{gathered} 21 \\ \mathbf{S c} \\ 44.96 \end{gathered}$	$\begin{gathered} 22 \\ \mathrm{Ti} \\ 47.90 \end{gathered}$	$\begin{gathered} 23 \\ \mathbf{V} \\ 50.94 \end{gathered}$	$\begin{gathered} 24 \\ \mathbf{C r} \\ 52.00 \end{gathered}$	$\begin{gathered} 25 \\ \mathbf{M n} \\ 54.94 \end{gathered}$	$\begin{gathered} 26 \\ \mathbf{F e} \\ 55.85 \end{gathered}$	$\begin{gathered} 27 \\ \text { C0 } \\ 58.93 \end{gathered}$	$\begin{gathered} 28 \\ \mathbf{N i} \\ 58.71 \end{gathered}$	$\begin{gathered} 29 \\ \mathrm{Cu} \\ 63.55 \end{gathered}$	$\begin{gathered} 30 \\ \mathbf{Z n} \\ 65.37 \end{gathered}$	$\begin{gathered} 31 \\ \text { Ga } \\ 69.72 \end{gathered}$	$\begin{gathered} 32 \\ \mathbf{G e} \\ 72.59 \end{gathered}$	$\begin{gathered} 33 \\ \mathbf{A s} \\ 74.92 \end{gathered}$	$\begin{gathered} 34 \\ \mathbf{S e} \\ 78.96 \end{gathered}$	$\begin{gathered} 35 \\ \mathbf{B r} \\ 79.90 \end{gathered}$	$\begin{gathered} 36 \\ \mathbf{K r} \\ 83.80 \end{gathered}$
$\begin{gathered} 37 \\ \mathbf{R b} \\ 85.47 \end{gathered}$	$\begin{gathered} 38 \\ \mathrm{Sr} \\ 87.62 \end{gathered}$	$\begin{gathered} 39 \\ \mathbf{Y} \\ 88.91 \end{gathered}$	$\begin{gathered} 40 \\ \mathbf{Z r} \\ 91.22 \end{gathered}$	$\begin{gathered} 41 \\ \mathbf{N b} \\ 92.91 \end{gathered}$	$\begin{gathered} 42 \\ \text { Mo } \\ 95.94 \end{gathered}$	$\begin{gathered} 43 \\ \text { Tc } \\ 98.91 \end{gathered}$	$\begin{gathered} 44 \\ \mathbf{R u} \\ 101.07 \\ \hline \end{gathered}$	$\begin{gathered} 45 \\ \mathbf{R h} \\ 102.91 \end{gathered}$	$\begin{gathered} 46 \\ \text { Pd } \\ 106.42 \end{gathered}$	$\begin{array}{\|c} 47 \\ \mathbf{A g} \\ 107.87 \\ \hline \end{array}$	$\begin{gathered} 48 \\ \text { Cd } \\ 112.40 \end{gathered}$	$\begin{gathered} 49 \\ \text { In } \\ 114.82 \end{gathered}$	$\begin{gathered} 50 \\ \text { Sn } \\ 118.69 \end{gathered}$	$\begin{gathered} 51 \\ \mathbf{S b} \\ 121.75 \end{gathered}$	$\begin{gathered} 52 \\ \mathrm{Te} \\ 127.60 \end{gathered}$	$\begin{gathered} 53 \\ \text { I } \\ 126.90 \end{gathered}$	$\begin{gathered} 54 \\ \mathbf{X e} \\ 131.30 \end{gathered}$
$\begin{gathered} 55 \\ \text { Cs } \\ 132.91 \end{gathered}$	$\begin{gathered} 56 \\ \mathbf{B a} \\ 137.34 \end{gathered}$	$\begin{gathered} 57 \dagger \\ \mathbf{L a} \\ 138.91 \end{gathered}$	$\begin{array}{\|c} 72 \\ \mathbf{H f} \\ 178.49 \end{array}$	$\begin{gathered} 73 \\ \text { Ta } \\ 180.95 \end{gathered}$	$\begin{gathered} 74 \\ \mathbf{W} \\ 183.85 \end{gathered}$	$\begin{gathered} 75 \\ \text { Re } \\ 186.21 \end{gathered}$	$\begin{gathered} 76 \\ \mathbf{O s} \\ 190.21 \end{gathered}$	$\begin{gathered} 77 \\ \text { Ir } \\ 192.22 \end{gathered}$	$\begin{gathered} 78 \\ \mathbf{P t} \\ 195.09 \end{gathered}$	$\begin{array}{\|c} 79 \\ \mathbf{A u} \\ 196.97 \end{array}$	$\begin{gathered} 80 \\ \mathbf{H g} \\ 200.59 \end{gathered}$	$\begin{gathered} 81 \\ \text { Tl } \\ 204.37 \end{gathered}$	$\begin{gathered} 82 \\ \mathbf{P b} \\ 207.19 \end{gathered}$	$\begin{gathered} 83 \\ \mathbf{B i} \\ 208.98 \end{gathered}$	$\begin{gathered} 84 \\ \text { Po } \\ (210) \end{gathered}$	$\begin{gathered} 85 \\ \mathbf{A t} \\ (210) \end{gathered}$	$\begin{gathered} 86 \\ \mathbf{R n} \\ (222) \end{gathered}$
$\begin{gathered} 87 \\ \mathbf{F r} \\ (223) \end{gathered}$	$\begin{gathered} 88 \\ \mathrm{Ra} \\ (226) \end{gathered}$	$\begin{gathered} 89 \ddagger \\ \mathbf{A c} \\ (227) \end{gathered}$															

\dagger	$\begin{gathered} 58 \\ \mathrm{Ce} \\ 140.12 \end{gathered}$	$\begin{gathered} 59 \\ \text { Pr } \\ 140.91 \end{gathered}$	$\begin{gathered} 60 \\ \text { Nd } \\ 144.24 \end{gathered}$	$\begin{gathered} 61 \\ \text { Pm } \\ 146.92 \end{gathered}$	$\begin{gathered} 62 \\ \mathbf{S m} \\ 150.35 \end{gathered}$	$\begin{gathered} 63 \\ \mathbf{E u} \\ 151.96 \end{gathered}$	$\begin{gathered} 64 \\ \text { Gd } \\ 157.25 \end{gathered}$	$\begin{array}{\|c\|} \hline 65 \\ \text { Tb } \\ 158.92 \end{array}$	$\begin{gathered} 66 \\ \text { Dy } \\ 162.50 \end{gathered}$	$\begin{gathered} 67 \\ \text { Ho } \\ 164.93 \end{gathered}$	$\begin{array}{\|c\|} \hline 68 \\ \mathbf{E r} \\ 167.26 \end{array}$	$\begin{gathered} 69 \\ \mathbf{T m} \\ 168.93 \end{gathered}$	$\begin{gathered} 70 \\ \mathbf{Y b} \\ 173.04 \end{gathered}$	$\begin{gathered} 71 \\ \mathbf{L u} \\ 174.97 \end{gathered}$
\pm	$\begin{gathered} 90 \\ \text { Th } \\ 232.04 \end{gathered}$	$\begin{gathered} 91 \\ \mathbf{P a} \\ 231.04 \end{gathered}$	$\begin{gathered} 92 \\ \mathbf{U} \\ 238.03 \end{gathered}$	$\begin{gathered} 93 \\ \mathbf{N p} \\ (237) \end{gathered}$	$\begin{gathered} 94 \\ \text { Pu } \\ (242) \end{gathered}$	$\begin{gathered} 95 \\ \text { Am } \\ (243) \end{gathered}$	$\begin{gathered} 96 \\ \text { Cm } \\ (247) \end{gathered}$	$\begin{gathered} 97 \\ \text { Bk } \\ (247) \end{gathered}$	$\begin{gathered} 98 \\ \text { Cf } \\ (251) \end{gathered}$	$\begin{gathered} 99 \\ \text { Es } \\ (254) \end{gathered}$	$\begin{gathered} 100 \\ \text { Fm } \\ (257) \end{gathered}$	$\begin{gathered} 101 \\ \mathbf{M d} \\ (258) \end{gathered}$	$\begin{gathered} 102 \\ \text { No } \\ (259) \end{gathered}$	$\begin{gathered} 103 \\ \mathbf{L r} \\ (260) \end{gathered}$

1. How many oxygen atoms are in 0.100 mol of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$?
A. 5.42×10^{22}
B. 6.02×10^{22}
C. 2.41×10^{23}
D. 5.42×10^{23}
2. What is the sum of the coefficients when the following equation is balanced using whole numbers?

$$
\ldots \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+\ldots \mathrm{CO}(\mathrm{~g}) \rightarrow \ldots \mathrm{Fe}(\mathrm{~s})+\ldots \mathrm{CO}_{2}(\mathrm{~g})
$$

A. 5
B. 6
C. 8
D. 9
3. Four identical containers under the same conditions are filled with gases as shown below. Which container and contents will have the highest mass?

A

B

C

D
4. $\quad 1.0 \mathrm{dm}^{3}$ of an ideal gas at 100 kPa and $25^{\circ} \mathrm{C}$ is heated to $50^{\circ} \mathrm{C}$ at constant pressure. What is the new volume in dm^{3} ?
A. 0.50
B. 0.90
C. 1.1
D. 2.0
5. What is the amount, in moles, of sulfate ions in $100 \mathrm{~cm}^{3}$ of $0.020 \mathrm{moldm}^{-3} \mathrm{FeSO}_{4}(\mathrm{aq})$?
A. 2.0×10^{-3}
B. 2.0×10^{-2}
C. 2.0×10^{-1}
D. 2.0
6. Which shows the sub-levels in order of increasing energy in the fourth energy level of an atom?
A. $\mathrm{f}<\mathrm{d}<\mathrm{p}<\mathrm{s}$
B. $\mathrm{p}<\mathrm{d}<\mathrm{f}<\mathrm{s}$
C. $\mathrm{d}<\mathrm{f}<\mathrm{p}<\mathrm{s}$
D. $\mathrm{s}<\mathrm{p}<\mathrm{d}<\mathrm{f}$
7. Which physical property of elements is represented by y on the graph below?

A. First ionization energy
B. Ionic radius
C. Atomic radius
D. Electronegativity
8. Which of the following redox reactions take place?
I. $\quad \mathrm{Cl}_{2}(\mathrm{aq})+2 \mathrm{NaI}(\mathrm{aq}) \rightarrow \mathrm{I}_{2}(\mathrm{aq})+2 \mathrm{NaCl}(\mathrm{aq})$
II. $\mathrm{Br}_{2}(\mathrm{aq})+2 \mathrm{NaI}(\mathrm{aq}) \rightarrow \mathrm{I}_{2}(\mathrm{aq})+2 \mathrm{NaBr}(\mathrm{aq})$
III. $\quad \mathrm{I}_{2}(\mathrm{aq})+2 \mathrm{NaBr}(\mathrm{aq}) \rightarrow \mathrm{Br}_{2}(\mathrm{aq})+2 \mathrm{NaI}(\mathrm{aq})$
A. I and II only
B. I and III only
C. II and III only
D. I, II and III
9. Which metals are considered to be transition elements?
I. Ti
II. Zn
III. Fe
A. I and II only
B. I and III only
C. II and III only
D. I, II and III
10. Which bonds are arranged in order of increasing polarity?
A. $\mathrm{H}-\mathrm{F}<\mathrm{H}^{-} \mathrm{Cl}<\mathrm{H}-\mathrm{Br}<\mathrm{H}-\mathrm{I}$
B. $\mathrm{H}-\mathrm{I}<\mathrm{H}-\mathrm{Br}<\mathrm{H}-\mathrm{F}<\mathrm{H}-\mathrm{Cl}$
C. $\mathrm{H}-\mathrm{I}<\mathrm{H}^{-} \mathrm{Br}<\mathrm{H}-\mathrm{Cl}<\mathrm{H}-\mathrm{F}$
D. $\mathrm{H}-\mathrm{Br}<\mathrm{H}-\mathrm{I}<\mathrm{H}-\mathrm{Cl}<\mathrm{H}-\mathrm{F}$
11. Which row correctly describes the bonding type and melting point of carbon and carbon dioxide?

	Carbon		Carbon dioxide	
A.	covalent bonding	high melting point	covalent bonding	low melting point
B.	ionic bonding	low melting point	ionic bonding	high melting point
C.	ionic bonding	high melting point	ionic bonding	low melting point
D.	covalent bonding	low melting point	covalent bonding	high melting point

12. What is the correct order of increasing boiling points?
A. $\mathrm{CH}_{3} \mathrm{CH}_{3}<\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}<\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Br}<\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{I}$
B. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}<\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Br}<\mathrm{CH}_{3} \mathrm{CH}_{3}<\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{I}$
C. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{I}<\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Br}<\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}<\mathrm{CH}_{3} \mathrm{CH}_{3}$
D.
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Br}<\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}<\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{I}<\mathrm{CH}_{3} \mathrm{CH}_{3}$
13. What are the correct formulas of the following ions?
A.

Nitrate	Phosphate	Carbonate	Ammonium
NO_{3}^{-}	PO_{4}^{3-}	CO_{3}^{-}	NH_{3}^{+}
NO_{3}^{2-}	PO_{3}^{2-}	CO_{3}^{2-}	NH_{3}^{+}
$\mathrm{NO}_{3}^{-{ }^{2-}}$	PO_{4}^{3-}	$\mathrm{CO}_{3}{ }^{2-}$	NH_{4}^{+}
$\mathrm{NO}_{3}{ }^{2-}$	PO_{3}^{2-}	CO_{3}^{2-}	NH_{4}^{+}

14. Which statements about hybridization are correct?
I. The hybridization of carbon in diamond is sp^{3}.
II. The hybridization of carbon in graphite is sp^{2}.
III. The hybridization of carbon in C_{60} fullerene is sp^{3}.
A. I and II only
B. I and III only
C. II and III only
D. I, II and III
15. A student measured the temperature of a reaction mixture over time using a temperature probe. By considering the graph, which of the following deductions can be made?

I. The reaction is exothermic.
II. The products are more stable than the reactants.
III. The reactant bonds are stronger than the product bonds.
A. I and II only
B. I and III only
C. II and III only
D. I, II and III
16. Consider the following enthalpy of combustion data.

$$
\begin{array}{ll}
\mathrm{C}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) & \Delta H^{\ominus}=-x \mathrm{~kJ} \mathrm{~mol}^{-1} \\
\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) & \Delta H^{\ominus}=-y \mathrm{~kJ} \mathrm{~mol}^{-1} \\
\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+3 \frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) & \Delta H^{\ominus}=-z \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{array}
$$

What is the enthalpy of formation of ethane in $\mathrm{kJ} \mathrm{mol}^{-1}$?

$$
2 \mathrm{C}(\mathrm{~s})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})
$$

A. $[(-x)+(-y)]-(-z)$
B. $(-z)-[(-x)+(-y)]$
C. $[(-2 x)+(-3 y)]-(-z)$
D. $(-z)-[(-2 x)+(-3 y)]$
17. Which row of the table correctly represents the equations for the lattice enthalpy of substance $X Y$ and the electron affinity of atom Y?
A.

Lattice enthalpy	Electron affinity
$\mathrm{X}^{+}(\mathrm{g})+\mathrm{Y}^{-}(\mathrm{g}) \rightarrow \mathrm{XY}(\mathrm{g})$	$\mathrm{Y}^{-}(\mathrm{g})+\mathrm{e}^{-} \rightarrow \mathrm{Y}^{2-}(\mathrm{g})$
$\mathrm{X}^{+}(\mathrm{g})+\mathrm{Y}^{-}(\mathrm{g}) \rightarrow \mathrm{XY}(\mathrm{s})$	$\mathrm{Y}(\mathrm{g})+\mathrm{e}^{-} \rightarrow \mathrm{Y}^{-}(\mathrm{g})$
$\mathrm{X}^{+}(\mathrm{g})+\mathrm{Y}^{-}(\mathrm{g}) \rightarrow \mathrm{XY}(\mathrm{s})$	$\mathrm{Y}(\mathrm{s})+\mathrm{e}^{-} \rightarrow \mathrm{Y}^{-}(\mathrm{s})$
$\mathrm{X}^{+}(\mathrm{g})+\mathrm{Y}^{-}(\mathrm{g}) \rightarrow \mathrm{XY}(\mathrm{g})$	$\mathrm{Y}(\mathrm{g})+\mathrm{e}^{-} \rightarrow \mathrm{Y}^{-}(\mathrm{g})$

18. Which factors will increase the entropy of this system?

$$
\mathrm{CaCO}_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{CaO}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})
$$

I. Increasing the temperature without changing the volume of the container.
II. Decreasing the concentration of the gas without changing the volume of the container.
III. Increasing the pressure without changing the volume of the container.
A. I and II only
B. I and III only
C. II and III only
D. I, II and III
19. A student added 0.20 g of calcium carbonate powder to $100 \mathrm{~cm}^{3}$ of $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid (an excess) and measured the volume of the gas that was evolved. The graph of the results is shown below.

Which graph would be obtained if 0.20 g of calcium carbonate powder is added to $100 \mathrm{~cm}^{3}$ of $0.5 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid (an excess)?
A.

B.

C.

D.

20. Which statement about the kinetic theory is not correct?
A. The particles in ice vibrate about fixed points.
B. The particles in steam have more energy than the particles in ice.
C. All the particles in water have the same amount of energy at 298 K .
D. Evaporation of water occurs at all temperatures between 273 K and 373 K when the atmospheric pressure is 101 kPa .
21. The rate expression for the reaction between iodine and propanone with an acid catalyst is found to be:

$$
\text { rate }=k\left[\mathrm{H}^{+}\right]^{1}\left[\mathrm{I}_{2}\right]^{0}\left[\mathrm{CH}_{3} \mathrm{COCH}_{3}\right]^{1}
$$

What is the overall order of the reaction?
A. 0
B. 1
C. 2
D. 3
22. Which graph represents a reaction that is first order with respect to reactant A.
A.

B.

C.

D.

23. Which are characteristics of a dynamic equilibrium?
I. Amounts of products and reactants are constant.
II. Amounts of products and reactants are equal.
III. The rate of the forward reaction is equal to the rate of the backward reaction.
A. I and II only
B. I and III only
C. II and III only
D. I, II and III
24. Four identical sealed containers are prepared each containing $10 \mathrm{~cm}^{3}$ of an organic compound and at the temperature shown below. Which container will have the highest vapour pressure?

	Substance	Temperature $/{ }^{\circ} \mathrm{C}$
A.	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$	15
B.	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$	30
C.	$\mathrm{CH}_{3} \mathrm{OCH}_{3}$	15
D.	$\mathrm{CH}_{3} \mathrm{OCH}_{3}$	30

25. Which descriptions are correct for both a Brønsted-Lowry acid and a Lewis acid?

	Brønsted-Lowry acid	Lewis acid
A.	proton donor	electron pair donor
B.	proton donor	electron pair acceptor
C.	proton acceptor	electron pair donor
D.	proton acceptor	electron pair acceptor

26. What is the pH of the solution formed when $10 \mathrm{~cm}^{3}$ of $\mathrm{HCl}(\mathrm{aq})$ with pH 1.0 is added to $990 \mathrm{~cm}^{3}$ of water?
A. 1.5
B. 2.0
C. 2.5
D. 3.0
27. Consider the equation for the dissociation of water:

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \quad \Delta H^{\ominus}=+57.3 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

Which statement is correct?
A. The pH of pure water is always 7 .
B. At temperatures above 298 K the pH of pure water is below 7 .
C. At temperatures above 298 K the pH of pure water is above 7 .
D. K_{w} decreases with increasing temperature.
28. Which combination of $1 \mathrm{~mol} \mathrm{dm}^{-3}$ solutions produces an acidic buffer?
A. $\quad 50 \mathrm{~cm}^{3} \mathrm{HCl}(\mathrm{aq})$ and $150 \mathrm{~cm}^{3} \mathrm{NH}_{3}(\mathrm{aq})$
B. $\quad 100 \mathrm{~cm}^{3} \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})$ and $50 \mathrm{~cm}^{3} \mathrm{HCl}(\mathrm{aq})$
C. $100 \mathrm{~cm}^{3} \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})$ and $50 \mathrm{~cm}^{3} \mathrm{NaOH}(\mathrm{aq})$
D. $50 \mathrm{~cm}^{3} \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})$ and $50 \mathrm{~cm}^{3} \mathrm{NaOH}(\mathrm{aq})$
29. Which salt dissolves in water to form an acidic solution?
A. Potassium ethanoate
B. Calcium ethanoate
C. Ammonium chloride
D. Sodium carbonate
30. What is the correct decreasing order of reactivity of the metals X, Y and Z based on the following equations?

$$
\begin{aligned}
& \mathrm{XCl}+\mathrm{Y} \rightarrow \mathrm{YCl}+\mathrm{X} \\
& \mathrm{YCl}+\mathrm{Z} \rightarrow \mathrm{YCl}+\mathrm{Z} \\
& \mathrm{ZCl}+\mathrm{X} \rightarrow \mathrm{XCl}+\mathrm{Z}
\end{aligned}
$$

A. $X>Y>Z$
B. $\mathrm{Y}>\mathrm{Z}>\mathrm{X}$
C. $Z>Y>X$
D. $\mathrm{Y}>\mathrm{X}>\mathrm{Z}$
31. Four electrolytic cells are constructed. Which cell would produce the greatest mass of metal at the negative electrode (cathode)?
A.

Electrolyte	Current / A	Time / s
$1.0 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{CuSO}_{4}(\mathrm{aq})$	1.0	500
$1.0 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{AgNO}_{3}(\mathrm{aq})$	2.0	250
$1.0 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{CuSO}_{4}(\mathrm{aq})$	1.0	750
$1.0 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{AgNO}_{3}(\mathrm{aq})$	1.5	250

32. Which is not a requirement for the standard hydrogen electrode?
A. Pressure of 101 kPa
B. $1 \mathrm{~mol} \mathrm{dm}^{-3}$ sulfuric acid
C. Temperature of 298 K
D. An inert electrode such as platinum
33. Which molecule contains an ester group?
A. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$
B. $\mathrm{CH}_{3} \mathrm{COOCH}_{3}$
C. $\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
D. $\mathrm{OHCCH}_{2} \mathrm{CHO}$
34. Which compound is produced in the reaction between but-2-ene and steam?
A. $\mathrm{CH}_{3} \mathrm{CHOHCHOHCH}_{3}$
B. $\mathrm{CH}_{2} \mathrm{OHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
C. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHOHCH}_{3}$
D. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
35. From which monomer is this polymer made?

A.
B.

C.
D.

36. Which compound is the major product of the reaction when 1-bromobutane is heated with concentrated sodium hydroxide in ethanol?
A. $\mathrm{CH}_{3} \mathrm{CHOHCH}_{2} \mathrm{CH}_{3}$
B. $\mathrm{CH}_{3} \mathrm{CHCHCH}_{3}$
C. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
D. $\mathrm{CH}_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{3}$
37. Which halogenoalkane reacts fastest with sodium hydroxide?
A. 1-iodobutane
B. 1-chlorobutane
C. 2-chloro-2-methylpropane
D. 2-iodo-2-methylpropane
38. Which molecule exhibits optical isomerism?
A. 3-iodopentane
B. 2-iodo-2-methylpropane
C. 1,3-diiodopropane
D. 2-iodobutane
39. What is the most likely use for the organic product of the following reaction?

$$
\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH} \rightarrow
$$

A. Catalyst
B. Pesticide
C. Detergent
D. Perfume
40. A student heated a solid in a crucible. The student measured the mass of the solid and crucible before and after heating and recorded the results.

$$
\begin{aligned}
& \text { Mass of crucible and solid before heating }=101.692 \mathrm{~g} \\
& \text { Mass of crucible and solid after heating }=89.312 \mathrm{~g}
\end{aligned}
$$

What value should the student record for the mass lost in grams?
A. 12.4
B. 12.38
C. 12.380
D. 12.3800

